Sondas y sensores de temperatura Pt 100 Generalidades

PRINCIPIO

La medición se base en la variación de la resistencia eléctrica de hilos metálicos con la temperatura.

Los materiales más frecuentes en uso son el platino y níquel.

El platino ofrece un largo rango de temperatura con una buena linealidad. Su pureza e inercia química son la garantía de estabilidad de los elementos sensibles.

La relación entre la resistencia eléctrica del platino y la temperatura se formula según la norma CEI 751 así:

 $R_t = R_0 [1 + At + Bt^2 + Ct^3 (t - 100)]$

R_t: Resistencia eléctrica resultante del elemento sensible a la temperatura t

R₀: Resistencia eléctrica del elemento sensible a 0 ℃

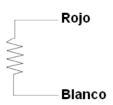
t: Temperatura local en ℃

A, B y C: Coeficientes definidos por calibración (C = 0 cuando t > 0 °C)

Los elementos sensibles que montamos en nuestras sondas de temperatura son sensores Pt100 (100 Ohm a 0 °C)

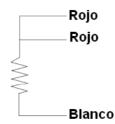
Pt100 (100 Ohm a 0°C): $R_0 = 100$ Ohm (a 0 °C) A 100 °C, R = 138,5 Ohm

NORMAS Y TOLERANCIAS


Francia: NFC 42330
Alemania: DIN 43760
Inglaterra: BS 1904
Internacional: CEI 751

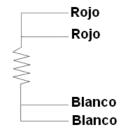
Tolerancia admisible en \mathbb{C} : \pm (0,15 + 0,002 [t]) pa ra la clase A Tolerancia admisible en \mathbb{C} : \pm (0,3 + 0,005 [t]) pa ra la clase B [t]: Temperatura en \mathbb{C}

Temperatura ℃	Desviaciones aceptadas en			
	clase A		clase B	
	Ω	${\mathbb C}$	Ω	${\mathfrak C}$
-200	±0,24	±0,55	±0,56	±1,3
-100	±0,14	±0,35	±0,32	±0,8
0	±0,06	±0,15	±0,12	±0,3
100	±0,13	±0,35	±0,30	±0,8
200	±0,20	±0,55	±0,48	±1,3
300	±0,27	±0,75	±0,64	±1,8
400	±0,33	±0,95	±0,79	±2,3
500	±0,38	±1,15	±1,06	±3,3
600	±0,43	±1,35	±1,06	±3,3
650	±0,46	±1,45	±1,13	±3,6
700	-	-	±1,17	±3,8
800	-	-	±1,28	±4,3
850	-	-	±1,34	±4,6


CONEXIONES ELÉCTRICAS

A continuación se describe 3 tipos de cableado del elemento sensible:

1/ Cableado a 2 hilos


El más simple pero la resistencia de la línea eléctrica baja la precisión de la medida.

2/ Cableado a 3 hilos

Muy usado en la industria, buen compromiso entre el costo del cable a 3 hilos y la precisión resultante (compensación de la resistencia de la línea eléctrica).

16-09-2015

3/ Cableado a 4 hilos

El montaje a 4 hilos permite suprimir los errores de resistencia de línea eléctrica. Se reserva a trabajos con alta precisión, como, para los cálculos de consumo de energía.

Tel.: +34 914 983 236 - e-mail: comercial@globalaguaespana.com

Sondas y sensores de temperatura Pt 100 Generalidades

TE

610-01

610 I2 01 A